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Abstract—Federated Learning (FL) can coordinate numerous
IoT devices to train large models collaboratively and provide
intelligent services and applications (FL-AIoT). However, large
models’ training requires significant memory and data, which
creates challenges for resource-constrained IoT devices. State-of-
the-art studies indicate that IoT devices have limited storage
capacity, fresh data collected by devices can overwrite the
outdated data and exhibit high data heterogeneity. This causes
the global model on the cloud server to forget outdated data’s
characteristics and degrades model accuracy (i.e., catastrophic
forgetting). Moreover, IoT devices with limited data collection
capacity and energy cannot collect enough data for large models’
training (i.e., data scarcity), which exacerbates catastrophic
forgetting. Existing methods generate training data but overlook
that catastrophic forgetting can significantly degrade the stability
of the generative network’s training. To address these issues, we
propose a Federated Fine-tuning adaptive aggregation method via
Knowledge Distillation (FedFKD). Specifically, FedFKD utilizes
global model updates to aid the data generator’s training.
FedFKD dynamically assigns aggregation weights to each device
by evaluating the model consistency, which can guide the global
model to update in the optimal direction. Furthermore, FedFKD
guides local models’ training by combining fresh and outdated
data characteristics through decoupled distillation with variable
distillation temperatures. Experiments on CIFAR-10/100 and
Tiny-ImageNet datasets show that compared to the best of
4 baselines, FedFKD can improve the average global model
accuracy by 1.37%, and achieve the lowest global training loss.

Index Terms—Federated learning, artificial intelligence of
things, catastrophic forgetting, large model training

I. INTRODUCTION

Large models need to be fed with a large amount of
data, but in real-world IoT scenarios, IoT data (e.g., images,
exhibit highly heterogeneous distributions) is not centralized
but distributed across numerous devices [1, 2]. This creates
communication burdens and privacy concerns for traditional
Machine Learning (ML, which transfers row data to a cloud
server for centralized training) in Artificial Intelligence of
Things (AIoT). Therefore, we need to explore more efficient
large model training methods to fully utilize the computing and
storage resources on IoT devices. To our knowledge, Federated
Learning (FL) can enable IoT devices to collaboratively train
large ML models in a distributed manner without sharing raw
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Fig. 1. Three challenges in large model training for FL-AIoT.

data (FL-AIoT) [3]. This makes FL a promising cloud-edge
collaborative large model training framework for AIoT [4].

However, as illustrated in Challenge 1 of Fig. 1, in real-
world IoT scenarios, due to IoT devices have limited storage
capacity, fresh data collected by devices can overwrite out-
dated data continuously and exhibit high data heterogeneity.
State-of-the-art studies have indicated that FL tends to use
fresh data from the last few rounds for training. Since large
models require a lot of data for FL training (e.g., Large
Language Models, LLMs), this can cause the aggregated
global model to forget outdated data’s characteristics (i.e.,
catastrophic forgetting) and degrade the model accuracy [5].
Moreover, as illustrated in Challenge 2 of Fig. 1, IoT de-
vices with limited data collection capacity and energy cannot
continuously collect enough data for local training (i.e., data
scarcity) [6], which exacerbates catastrophic forgetting and
creates data scarcity for the training of large models. There-
fore, to improve the global model accuracy with heterogeneous
and scarce data, IoT devices need to overcome catastrophic
forgetting while generating training data that follows the real-
world distribution. Existing methods generate data for training.
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Fig. 2. The design details of FedFKD. ① Global model delivery. ② Decoupled
distillation and local training. ③ Upload parameters. ④ Global aggregation and
model integration. ⑤ Generate data.

For instance, FedGAN simultaneously uses a generator and
a discriminator to generate training data and adds noise to
train the generative network [7], but this requires signifi-
cant computational overhead. Based on knowledge distillation,
DENSE trains the data generator from the distilled knowledge
without relying on additional shared information or datasets
[8]. However, as training goes on, due to catastrophic forget-
ting, the discriminators in these methods may forget outdated
data’s characteristics, which undermines the stability of the
generative network’s training. This means that good training of
the generator requires first overcoming catastrophic forgetting.

Introducing knowledge distillation into FL (i.e., Federated
Distillation, FD) to extract and combine characteristics from
both fresh and outdated data can effectively guide local train-
ing and mitigate catastrophic forgetting [12]. FedKD utilizes
FD to integrate the dark knowledge mined from outdated
data into the new training round [9], which can effectively
save computational costs. To save storage space on devices,
FedDistill extracts features from the dataset and shares them
with other client devices through the cloud server [10], but
this raises privacy concerns. Unlike the above methods, DKD
extracts characteristics from the Logits vector and decomposes
the classic distillation loss into the target class Cross-Entropy
loss and non-target distillation loss [11], which is proven
to improve the distillation effect. However, as illustrated in
Challenge 3 of Fig. 1, these methods use fixed distillation
temperatures across different devices, which ignores that fixed
distillation temperatures cannot match the heterogeneous data
distributions on devices. This leads to poor distillation perfor-
mance and fails to mitigate catastrophic forgetting. Therefore,
dynamically adjusting distillation temperatures for devices
based on the heterogeneous data distribution to overcome
catastrophic forgetting and stabilize the generator’s training
remains a significant challenge in FL-AIoT.

Motivated by these issues, we propose FedFKD to generate
data, while effectively overcoming catastrophic forgetting.

The contributions of our paper are depicted as follows.

• IoT device side. FedFKD builds an adaptive distilla-
tion temperature-aware mechanism to adjust distillation
temperatures for each device dynamically. Furthermore,
FedFKD dynamically assigns aggregation weights to each
IoT device by evaluating model consistency.

• Cloud server side. A global model updates-assisted data
generator is used to generate training data. FedFKD
utilizes a sliding window on the cloud server to integrate
M historical global models.

• Effectiveness. Experiments on three different datasets
demonstrate that compared to the best of 4 baselines,
FedFKD can improve the average global model accuracy
by 1.37% and achieve the lowest global training loss.

The remainder of this paper is organized as follows. Our
system model is shown in Section II. The design details of
FedFKD are discussed in Section III. The experiments are
reported in Section IV. Finally, we conclude with Section V.

II. SYSTEM MODEL

Our system model is shown in Fig. 2, which consists of
N IoT devices and K devices are randomly selected in each
training round. Each IoT device ck has a private local dataset
Dk, which contains C types of samples, and each sample is
represented as x ∈ Rd with a corresponding label y. The
global dataset of the entire system is D =

∑N
k∈N Dk. All

IoT devices are initialized with a global model w0. In the t-th
training round, the local model of IoT device ck is denoted as
wt−1

k , and the aggregated global model parameters are denoted
as wt. Each IoT device optimizes the local model and the
optimization objective is given by

wt
k = argminE(x,y)∼Dk

[L(w;wt−1, x, y)], (1)

where L is the composite loss function. Device ck uses its local
dataset Dk as input to both the local model wt

k and the global
model wt−1 from the cloud server for characteristic extraction.
The Logits vector output (i.e., local data characteristic) of
client ck for sample x is denoted as

s(wt
k, x) = [z1,k, z2,k, ..., zi,k, ..., zC,k]︸ ︷︷ ︸

zl
k

∈ R1×C .
(2)

In the (t − 1)-th training round, the characteristic of the
global model for the device’s local data is denoted as

s(wt−1, x) = [z1, z2, ..., zi, ..., zC ]︸ ︷︷ ︸
zg
k

∈ R1×C .
(3)

The target class prediction probability ply,k and the non-target
class probability p̂ly,k for sample x of device ck are given by

ply,k =
exp(zli,k)∑C
j=1 exp(z

l
j,k)

, p̂ly,k =
exp(zl

ĩ,k
)∑C

i exp(zl
ĩ,k

)
, (4)

where ĩ ∈ [1, C]∧ ĩ ̸= y and zli,k is the Logits output of device
ck for the local sample x. The global representation prediction
probability for non-target classes is given by

p̂gy,k =
exp(zg

ĩ,k
)∑C

ĩ exp(zg
ĩ,k

)
. (5)



TABLE I
LIST OF MAIN SYMBOLIC PARAMETERS

Symbol Symbol Meaning
d Dimensions of the model
x Samples in the dataset D
y Sample x corresponds to the label
r Local iteration epoch
η Learning rate
K Total number of randomly selected IoT devices
N Total number of IoT devices
C Total number of categories of images
T Training rounds
B Mini-batch size
ck The k-th IoT device
wt Global model of t-th training round
wt

k Local model of ck in t-th training round
zi The Logits output of sample x on a Class i sample
zy Sample x Logits output on the target class
w̄t Integrated model in t-th training round
σt
k Model consistency of ck in t-th training round

αt
k Aggregate weight of ck in t-th training round

s(·) The Logits output of the model
M Sliding window size
Dk Local dataset for ck

III. LARGE MODEL TRAINING IN FEDFKD
A. Adaptive Distillation Temperature-Aware Mechanism

We observed that the Logits values of most large models
are distributed near zero (with fewer values far from zero,
resembling a normal distribution). Therefore, we approximate
the Logits distribution as a normal distribution with a mean µ
and a variance ϵ. Then, we can rescale the sample’s probability
distribution pi as

p̃i =
exp((zi − µ)/ϵ)∑C
j=1 exp((zj − µ)/ϵ)

=
exp(zi/ϵ)∑C
j=1 exp(zj/ϵ)

. (6)

From (6), it can be observed that the effect of the distil-
lation temperature τ is similar to the role of ϵ in a normal
distribution. Thus, τ can alter the scale of the probability
distribution without affecting the classification results. The
distillation temperature τk of device ck dynamically changes
with the Logits output vector of the model, which is given by

τk = τ [s(wt
k, [Dk]b)], (7)

where τ [·] is the standard deviation function and [Dk]b is
the b-th mini-batch of data randomly sampled from Dk.
After softening by the distillation temperature τk, the local
probability prediction and global probability prediction for
non-target classes on device ck are given by

p̂ly,k(τk) =
exp(zl

ĩ,k
/τk)∑C

ĩ exp(zl
ĩ,k

/τk)
,

p̂gy,k(τk) =
exp(zg

ĩ,k
/τk)∑C

ĩ exp(zg
ĩ,k

/τk)
.

(8)

We redefine the decoupled distillation loss LDeD as

LDeD(wt
k, w

t−1, x) = LCE(p
l
y,k, 1y)

+ βτk
2LKL(p̂

g
y,k(τk)∥p̂

l
y,k(τk)),

(9)

where 1y is the label of x, β is the extraction intensity of
the characteristic in the global distribution, LCE is the Cross-
Entropy loss, and LKL is the Kullback-Leibler divergence loss.
The covariance matrix of the characteristic representation zi
of x is equal to its correlation matrix K:

K =
1

C − 1

C∑
i=1

(zi − z)(zi − z)⊤

= (zi − z)/
√

V ar(z).

(10)

where zi is the model output vector of the sample for the i-
th class, z̄ is the average vector representation of the sample
across all classes, and V ar(·) is the variance function. To
eliminate the inter-class characteristic correlation of the sample
and alleviate the imbalance in accuracy between classes, we
introduce a regularization term LRegular by minimizing the
Frobenius norm of the matrix K, which penalizes the variance
between the singular values. LRegular is given by

LRegular(w
t
k, x) =

1

d2
∥K∥2F. (11)

The local overall optimization objective of device ck in the
t-th training round is given by

Lk = LDeD(wt
k, w

t−1, x) + θLRegular(w
t
k, x), (12)

where θ is the weight of LRegular.

B. Global Model Updates-Assisted Data Generator
We use the global model’s network structure and model

parameters to construct the sample generator G. We first input
a noise N (0, 1) into G and assign random labels ỹ to the
synthetic data x̃. By minimizing the loss LCE between the
generator’s output and the global model’s output, we have

LCE = CE(wt(x̃), ỹ). (13)

To increase the diversity of the synthetic data, we introduce
LKL to simulate the classification probabilities of the synthetic
data on other categories, which is given by

Ldiv = −LKL(G(x̃), wt(x̃)). (14)

Since the sample generated by model inversion may deviate
from the true data distribution, we introduce batch normaliza-
tion loss (i.e., performing statistical information similar to the
global model’s normalization layer, BN layer, on the synthetic
data), which is given by

LBN =
∑
l

(
∥∥µl(x̃)− µl

∥∥+
∥∥ϵ2l (x̃)− ϵ2l

∥∥), (15)

where µl(x̃) and ϵ2l (x̃) are the mean and variance of the l-
th BN layer of G, respectively. µl and ϵ2l are the mean and
variance of the l-th BN layer of the global model, respectively.

Therefore, the goal of G is to generate data that is similar
to the real data distribution, which is denoted as

min
G

LCE + ωdivLdiv + ωBNLBN , (16)

where ωdiv is the weight of Ldiv and ωBN is the weight of
LBN .



Algorithm 1: FedFKD
Input: N , T , E, M, r, β, θ, ωdiv , ωBN

Output: Global model w
1 Initial w0 and wG

2 begin
3 for each training round t = 1, 2, 3, ..., T do
4 for device ck in parallel do
5 Save global model wt−1 and wt

k ← wt−1

6 wt
k ← ClientUpdate(wt

k,Dk)
7 x̃ = Generate(wt−1)
8 σt

k(x̃) = V ar(s(wt
k, x̃))

9 end
10 αt

k(x̃) = σt
k(x̃)/

∑
k σ

t
k(x̃)

11 wt = 1
K

∑K
k=1 α

t
k(x)w

t
k

12 if t <M then
13 Send wt to devices
14 else
15 Send wt = wt = 1

M
∑M

m=1 w
t−m+1 to devices

16 end
17 end
18 return w
19 end
20 function ClientUpdate(wt

k,Dk)
21 begin
22 for local epoch e = 1, ..., r do
23 for batch b ∈ B do
24 τk = τ [s(wt

k, [Dk]b)]
25 Lk = LDeD(wt

k, w
t−1, [Dk]b) +

θLRegular(w
t
k, [Dk]b)

26 wt
k ← wt,0

k −
η

|[Dk]b|
∑r−1

e=0

∑B
b=1∇Lk

27 end
28 end
29 return wt

k to sever
30 end
31 function Generate(wt−1)
32 begin
33 Input noise z ∼ N (0, 1) and wG ← wt−1

34 Generate x̃ with label ỹ
35 Update wG by minG LCE + ωdivLdiv + ωBNLBN

36 return x̃
37 end

C. Model Consistency-Based Adaptive Global Aggregation

In the t-th training round, after the local training, the cloud
server evaluates the model consistency coefficient σt

k(w
t
k, x̃)

by calculating the variance of the Logits vector s(wt
k, x̃),

which is given by

σt
k(x̃) = V ar(s(wt

k, x̃)), (17)

where, x̃ is the generated data sample. The higher the variance
σt
k(x̃), the greater the confidence of device ck in its prediction

for sample x̃, and thus, device ck should be assigned a higher
aggregation weight. The global aggregation weight αt

k(x̃) of
device ck is given by

αt
k(x̃) = σt

k(x̃)/

K∑
σt
k(x̃).

(18)

The cloud server aggregates the global model based on the
aggregation weight of each device, which is denoted as

wt =

K∑
αt
k(x̃)w

t
k.

(19)

After aggregating the global model, we set up a sliding
window on the cloud server to integrate M historical global
models, obtaining the integrated model w̄t, which is given by

wt =
1

M

M∑
m=1

wt−m+1. (20)

In the (t+ 1)-th training round, the cloud server sends w̄t

as the latest global model wt to randomly selected devices.
Then devices perform mini-batch SGD on their local datasets.
The local model update for device ck is given by

wt,r
k = wt,0

k − η

|[Dk]b|

r−1∑
e=0

B∑
b=1

∇Lk, (21)

where r is the local update epoch and η is the learning rate.
The design details of FedFKD are presented in Algorithm 1.

IV. PERFORMANCE EVALUATION

A. Experimental Settings

Experimental Environment. All experiments are con-
ducted on a server with 256GB of RAM (equipped with 2
NVIDIA A100 GPUs, each with 80GB of memory). The
server runs the Ubuntu 20.04 operating system and is powered
by a 64-core Intel(R) Xeon(R) Gold 6326 CPU @2.90GHz
and CUDA 11.8 with PyTorch 1.8 framework.

Non-IID Datasets, Target Models, and Hyperparameter
Settings. To simulate a realistic heterogeneous data environ-
ment in FL-AIoT, we use the Dirichlet function Dir(α) to
partition the training dataset to each device to generate non-
IID datasets [13]. Note that a smaller parameter α indicates
higher data heterogeneity among different devices. To simulate
a small training data sample, we distribute the datasets to
N = 100 devices and randomly select K = 10 devices
to participate in FL training in each training round. For the
CIFAR-10/100 datasets [14], we train a CNN model (two
convolutional layers and two fully connected layers). For the
Tiny-ImageNet dataset [15], we train a ResNet-18 model. To
ensure fairness, we use the same settings as in FedProxGAN
[19], we set the generator’s learning rate to 0.01, r = 5,
batchsize = 50, η = 0.1, and T = 200. To achieve better
performance of FedFKD, we set β = 1.0, θ = 0.1, ωdiv = 1,
ωBN = 0.1, and M = 5.

Baselines. Four comparative methods are as follows.
• FedAvg is the most classic baseline method in FL [16],

which averages the local model parameters.
• FedCurv utilizes a penalty term to mitigate catastrophic

forgetting based on the EWC algorithm [17], with the
penalty term’s weight determined by the Fisher matrix.

• FedProx introduces a constraint term to the local loss
[18], which can mitigate catastrophic forgetting.

• FedProxGAN is the state-of-the-art FL method based on
data generation that adds a data generator on top of
FedProx and fine-tunes the global model [19].

Metrics. Two evaluation criteria are depicted as follows.
• Global model accuracy Accg . A higher Accg indicates

better model training performance of the method.



TABLE II
GLOBAL MODEL ACCURACY Accg OF DIFFERENT TRAINING METHODS (%)

Method CIFAR-10 CIFAR-100 Tiny-ImageNet Average
Dir(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1)

FedAvg 35.13 66.97 73.25 31.31 37.32 38.62 13.62 16.93 17.70 36.76
FedCurv 34.51 67.34 72.82 30.85 35.99 39.16 14.26 17.97 19.62 36.95
FedProx 38.16 63.98 62.65 32.13 32.10 35.70 16.73 18.17 21.57 35.85

FedProxGAN - 69.73 74.38 35.33 40.23 43.31 20.11 23.15 26.43 41.58
FedFKD (Ours) 43.96 71.70 74.65 36.90 42.50 42.56 21.24 24.72 28.36 42.95

The minimum training loss
Unstable training

Unstable training

Unstable training

The gap increases The gap increases

Fig. 3. Global model training loss Lossg of different training methods on
the CIFAR-10/100 datasets.

• Global model training loss Lossg . A lower Lossg indi-
cates better training performance of the model.

B. Analysis of Global Model Accuracy Accg

Table II reports the global model accuracy Accg of five
methods on three datasets with α = {0.05, 0.5, 1}.

1) CIFAR-10 dataset. Under all levels of data heterogeneity,
FedFKD achieves the highest global accuracy. When the level
of data heterogeneity is low (α = 1), the Accg of FedFKD
outperforms the optimal baseline method (FedProxGAN) by
approximately 0.27%. As data heterogeneity increases (α =
{0.05, 0.5}), the Accg of FedFKD is significantly higher than
the optimal baseline methods (FedProxGAN and FedProx) by
approximately 1.97% and 5.80%, respectively. Notably, when

α = 0.05, since the generator in FedProxGAN samples based
on local model averaging, catastrophic forgetting on devices
leads to severe oscillations in the discriminator’s training (i.e.,
it fails to converge). Consequently, the specific accuracy for
this case is not reported in Table II.

2) CIFAR-100 dataset. When α = 1, FedProxGAN achieves
the highest Accg = 43.31%. However, when data heterogene-
ity α = {0.05, 0.5}, FedFKD achieves the highest Accg =
36.90% and 42.50%, which is higher than FedProxGAN by
1.57% and 2.27%, respectively. This indicates that FedFKD
can maintain good performance under high data heterogeneity.

3) Tiny-ImageNet. We find that FedFKD achieves the
highest Accg = 21.24%, 24.72%, and 28.36% when α =
{0.05, 0.5, 1}, respectively, significantly outperforming other
baseline methods. This indicates that FedFKD can maintain
good performance on more complex datasets.

C. Analysis of Global Model Training Loss Lossg

Fig. 3 shows the global model training loss Lossg of
five methods on the CIFAR-10/100 datasets with α =
{0.05, 0.5, 1}. The training loss clearly illustrates the conver-
gence speed and training stability of a model training method.

1) CIFAR-10 dataset. From (a), (b), and (c) in Fig. 3, we
find that FedFKD achieves the lowest training loss across all
levels of data heterogeneity. In particular, when α = {0.5, 1},
the Lossg of FedProxGAN is similar to that of FedFKD,
but the training of FedFKD is noticeably more stable. When
facing high data heterogeneity (α = 0.05), the Lossg of
FedFKD is significantly lower than that of FedProxGAN. This
indicates that FedFKD’s training is more stable, and FedFKD
can more effectively mitigate catastrophic forgetting under
highly heterogeneous data.

2) CIFAR-100 dataset. From (d), (e), and (f) in Fig. 3, we
find that the growing complexity of the CIFAR-100 dataset
has caused a noticeable rise in the Lossg for all methods
compared to CIFAR-10. FedFKD achieves the lowest Lossg
and the fastest convergence speed across all levels of data
heterogeneity. When α = {0.5, 1}, the Lossg of FedFKD is
significantly lower than that of the other four methods. When
facing a high level of data heterogeneity (α = 0.05), the Lossg
of FedProxGAN is close to that of FedFKD, but still higher
than that of FedFKD, and the training of FedProxGAN is
extremely unstable. The above experimental results indicate
that FedFKD can maintain lower training loss and faster
convergence speed on more complex datasets.



V. CONCLUSION

The proposed FedFKD can tackle the following challenges.
1) Diverse IoT devices have limited storage capacity, fresh data
collected by devices can continuously overwrite the outdated
data and exhibit high data heterogeneity, which leads to
catastrophic forgetting in the global model. 2) IoT devices with
limited data collection capacity and energy cannot continu-
ously collect enough data for local training, which exacerbates
catastrophic forgetting. To this end, we propose a Feder-
ated Fine-tuning adaptive aggregation method via Knowledge
Distillation (FedFKD). Specifically, FedFKD utilizes global
model updates to aid the data generator’s training. To guide
the global model to update in the optimal direction, FedFKD
dynamically assigns aggregation weights to each device and
utilizes a sliding window on the cloud server. FedFKD builds
an adaptive distillation temperature-aware mechanism to adjust
distillation temperatures for each device dynamically. Experi-
ments on three datasets demonstrate that FedFKD can achieve
higher global model accuracy and lower global training loss
with different data heterogeneity. These improvements indicate
that FedFKD is a promising method to overcome catastrophic
forgetting for IoT devices with scarce and Non-IID data.
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